If the tangent drawn to the hyperbola 4y² = x² + 1 intersect the co-ordinate axes at the distinct points A and B, then the locus of the mid-point of AB is:

a. 4x² - y² - 16x²y² = 0
a. 4x² - y² + 16x²y² = 0
a. x² - 4y² + 16x²y² = 0
a. x² - 4y² - 16x²y² = 0