Vega wants to prove that the segment joining midpoints of two sides of a triangle is half the length of the third side. Two triangles E F G and triangle E H I mapped on top on one another sharing point E \[E\] \[H\] \[I\] \[F\] \[G\] Two triangles E F G and triangle E H I mapped on top on one another sharing point E Select the appropriate rephrased statement for Vega's proof. Choose 1 answer: Choose 1 answer: (Choice A) In \[\triangle EFG\], if \[FG=\dfrac{1}{2}HI\], then \[EH=HF\] and \[EI=IG\]. A In \[\triangle EFG\], if \[FG=\dfrac{1}{2}HI\], then \[EH=HF\] and \[EI=IG\]. (Choice B) In \[\triangle EFG\], if \[HI=\dfrac{1}{2}FG\], then \[EH=HF\] and \[EI=IG\]. B In \[\triangle EFG\], if \[HI=\dfrac{1}{2}FG\], then \[EH=HF\] and \[EI=IG\]. (Choice C) In \[\triangle EFG\], if \[EH=HF\] and \[EI=IG\], then \[FG=\dfrac{1}{2}HI\]. C In \[\triangle EFG\], if \[EH=HF\] and \[EI=IG\], then \[FG=\dfrac{1}{2}HI\]. (Choice D) In \[\triangle EFG\], if \[EH=HF\] and \[EI=IG\], then \[HI=\dfrac{1}{2}FG\]. D In \[\triangle EFG\], if \[EH=HF\] and \[EI=IG\], then \[HI=\dfrac{1}{2}FG\].